Photosystem I lacking the PSI-G subunit has a higher affinity for plastocyanin and is sensitive to photodamage.

نویسندگان

  • Agnieszka Zygadlo
  • Poul Erik Jensen
  • Dario Leister
  • Henrik Vibe Scheller
چکیده

PSI-G is an 11 kDa subunit of PSI in photosynthetic eukaryotes. Arabidopsis thaliana plants devoid of PSI-G have a decreased PSI content and an increased activity of NADP(+) photoreduction in vitro but otherwise no obvious phenotype. To investigate the biochemical basis for the increased activity, the kinetic parameters of the reaction between PSI and plastocyanin were determined. PSI-G clearly plays a role in the affinity for plastocyanin since the dissociation constant (K(D)) is only 12 muM in the absence of PSI-G compared to 32 muM for the wild type. On the physiological level, plants devoid of PSI-G have a more reduced Q(A). This indicates that the decreased PSI content is due to unstable PSI rather than an adaptation to the increased activity. In agreement with this indication of decreased stability, plants devoid of PSI-G were found to be more photo-inhibited both at low temperature and after high light treatment. The decreased PSI stability was confirmed in vitro by measuring PSI activity after illumination of a thylakoid suspension which clearly showed a faster decrease in PSI activity in the thylakoids lacking PSI-G. Light response of the P700 redox state in vivo showed that in the absence of PSI-G, P700 is more reduced at low light intensities. We conclude that PSI-G is involved in the binding dynamics of plastocyanin to PSI and that PSI-G is important for the stability of the PSI complex.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Release of oxidized plastocyanin from photosystem I limits electron transfer between photosystem I and cytochrome b6f complex in vivo.

We used fast absorbance spectroscopy to investigate in vivo binding dynamics and electron transfer between plastocyanin (pc) and photosystem I (PSI), and cytochrome (cyt) f oxidation kinetics in Chlamydomonas reinhardtii mutants in which either the binding or the release of pc from PSI was diminished. Under single flash-excitation conditions, electron flow between PSI and the cyt complex was no...

متن کامل

Photosystem I and Regulatory Proteins for its Biogenesis

Photosystem I (PSI) is a pigment-protein complex located in the thylakoid membrane of cyanobacteria and chloroplasts of algae and higher plants, which functions as a plastocyanin (or cytochrome c6)-ferredoxin oxidoreductase. The reducing potential of ferredoxin is utilized for a variety of biochemical processes such as the reduction of NADP, or the assimilation of nitrate or sulfate. In higher ...

متن کامل

Tetratricopeptide repeat protein protects photosystem I from oxidative disruption during assembly.

A Chlamydomonas reinhardtii mutant lacking CGL71, a thylakoid membrane protein previously shown to be involved in photosystem I (PSI) accumulation, exhibited photosensitivity and highly reduced abundance of PSI under photoheterotrophic conditions. Remarkably, the PSI content of this mutant declined to nearly undetectable levels under dark, oxic conditions, demonstrating that reduced PSI accumul...

متن کامل

The plastome-encoded PsaJ subunit is required for efficient Photosystem I excitation, but not for plastocyanin oxidation in tobacco.

The functions of several small subunits of the large photosynthetic multiprotein complex PSI (Photosystem I) are not yet understood. To elucidate the function of the small plastome-encoded PsaJ subunit, we have produced knockout mutants by chloroplast transformation in tobacco (Nicotiana tabacum). PsaJ binds two chlorophyll-a molecules and is localized at the periphery of PSI, close to both the...

متن کامل

The stable assembly of newly synthesized PsaE into the photosystem I complex occurring via the exchange mechanism is facilitated by electrostatic interactions.

Photosystem I (PSI) is a photochemically active membrane protein complex that functions at the reducing site of the photosynthetic electron-transfer chain as plastocyanin-ferredoxin oxidoreductase. PsaE, a peripheral subunit of the PSI complex, plays an important role in the function of PSI. PsaE is involved in the docking of ferredoxin/flavodoxin to the PSI complex and also participates in the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biochimica et biophysica acta

دوره 1708 2  شماره 

صفحات  -

تاریخ انتشار 2005